Security & RLS Implementation | CONFIDENTIAL

WAREHOUSE SECURITY
& RLS IMPLEMENTATION

Row-Level Security • Column-Level Security • Data Masking • Permissions

Version 1.0 | January 2026

Table of Contents

1. Security Overview
Fabric Warehouse provides multiple layers of security to protect sensitive data. This guide covers implementing row-level security (RLS), column-level security (CLS), and dynamic data masking.
1.1 Security Layers
	Layer
	Description
	Scope

	Workspace
	Role-based access to workspace items
	All items

	Object
	GRANT/DENY on tables, views, schemas
	Database objects

	Row-Level
	Filter rows based on user context
	Table rows

	Column-Level
	Grant access to specific columns
	Table columns

	Masking
	Obfuscate sensitive column values
	Column values

1.2 Security Principles
1. Least Privilege: Grant minimum access required
1. Defense in Depth: Multiple security layers
1. Separation of Duties: Different roles for different functions
1. Audit: Track and log access

2. Row-Level Security (RLS)
RLS restricts which rows users can access based on user identity or role. Data filtering happens transparently at query time.
2.1 RLS Components
1. Security Predicate Function: Returns 1 for allowed rows, 0 for denied
1. Security Policy: Binds predicate function to table
1. User Mapping Table: Maps users to their allowed data scope
1. Context Functions: USER_NAME(), SUSER_SNAME(), SESSION_CONTEXT
2.2 Implementation Steps
Step 1: Create user mapping table
CREATE TABLE security.user_region_access (
 user_email VARCHAR(100) NOT NULL,
 region VARCHAR(50) NOT NULL,
 PRIMARY KEY (user_email, region)
);

-- Populate with user-to-region mappings
INSERT INTO security.user_region_access VALUES
 ('alice@company.com', 'Northeast'),
 ('alice@company.com', 'Southeast'),
 ('bob@company.com', 'West'),
 ('admin@company.com', 'ALL');
Step 2: Create predicate function
CREATE FUNCTION security.fn_region_access_predicate
 (@region VARCHAR(50))
RETURNS TABLE
WITH SCHEMABINDING
AS
RETURN SELECT 1 AS access_granted
WHERE EXISTS (
 SELECT 1 FROM security.user_region_access
 WHERE user_email = USER_NAME()
 AND (region = @region OR region = 'ALL')
);
Step 3: Create security policy
CREATE SECURITY POLICY security.region_filter_policy
ADD FILTER PREDICATE security.fn_region_access_predicate(region)
 ON curated.fact_sales
WITH (STATE = ON);

Important: RLS policies are enforced for all users except db_owner. Test with non-admin accounts.

3. RLS Patterns
3.1 Pattern: Manager Hierarchy
Users see data for themselves and their reports.
-- Employee hierarchy table
CREATE TABLE security.employee_hierarchy (
 employee_email VARCHAR(100),
 manager_email VARCHAR(100),
 department VARCHAR(50)
);

-- Predicate: See own and reports' data
CREATE FUNCTION security.fn_manager_predicate(@emp_email VARCHAR(100))
RETURNS TABLE
WITH SCHEMABINDING
AS
RETURN SELECT 1 AS access_granted
WHERE @emp_email = USER_NAME() -- Own data
 OR EXISTS (-- Reports' data
 SELECT 1 FROM security.employee_hierarchy
 WHERE employee_email = @emp_email
 AND manager_email = USER_NAME()
);
3.2 Pattern: Business Unit
Users see data only for their business unit.
-- Security policy for business unit access
CREATE FUNCTION security.fn_business_unit(@bu_id INT)
RETURNS TABLE
WITH SCHEMABINDING
AS
RETURN SELECT 1 AS access_granted
WHERE @bu_id IN (
 SELECT business_unit_id
 FROM security.user_business_unit
 WHERE user_email = USER_NAME()
);
3.3 Pattern: Date-Based
Restrict historical data access.
-- Only allow access to recent data
CREATE FUNCTION security.fn_date_restriction(@service_date DATE)
RETURNS TABLE
WITH SCHEMABINDING
AS
RETURN SELECT 1 AS access_granted
WHERE @service_date >= DATEADD(YEAR, -2, GETDATE())
 OR EXISTS (
 SELECT 1 FROM security.historical_access
 WHERE user_email = USER_NAME()
);

4. Column-Level Security
Restrict access to sensitive columns while allowing access to the table.
4.1 GRANT on Columns
-- Create role for limited access
CREATE ROLE limited_access;

-- Grant SELECT on specific columns only
GRANT SELECT ON curated.dim_member
 (member_id, first_name, last_name, state)
TO limited_access;

-- Deny access to sensitive columns
DENY SELECT ON curated.dim_member (ssn, date_of_birth)
TO limited_access;
4.2 View-Based Column Security
Use views to control column access:
-- Create view with limited columns
CREATE VIEW curated.vw_member_public AS
SELECT
 member_id,
 first_name,
 last_name,
 state,
 -- Mask sensitive data
 'XXX-XX-' + RIGHT(ssn, 4) AS ssn_masked
FROM curated.dim_member;

-- Grant access to view, not base table
GRANT SELECT ON curated.vw_member_public TO public_users;

5. Dynamic Data Masking
Obfuscate sensitive data for non-privileged users while preserving data format.
5.1 Masking Functions
	Function
	Description
	Example Output

	default()
	Full masking based on data type
	XXXX, 0, 1900-01-01

	email()
	Mask email domain
	jXXX@XXXX.com

	partial()
	Expose prefix/suffix
	XXX-XX-1234

	random()
	Random value in range
	Random number

5.2 Implementing Masking
-- Add masking to existing columns
ALTER TABLE curated.dim_member
ALTER COLUMN ssn ADD MASKED WITH (FUNCTION = 'partial(0,"XXX-XX-",4)');

ALTER TABLE curated.dim_member
ALTER COLUMN email ADD MASKED WITH (FUNCTION = 'email()');

ALTER TABLE curated.dim_member
ALTER COLUMN phone ADD MASKED WITH (FUNCTION = 'default()');
5.3 Creating Table with Masking
CREATE TABLE curated.dim_member (
 member_id INT PRIMARY KEY,
 first_name VARCHAR(50),
 last_name VARCHAR(50),
 ssn VARCHAR(11) MASKED WITH (FUNCTION = 'partial(0,"XXX-XX-",4)'),
 email VARCHAR(100) MASKED WITH (FUNCTION = 'email()'),
 phone VARCHAR(20) MASKED WITH (FUNCTION = 'default()')
);
5.4 Granting UNMASK Permission
-- Allow specific users to see unmasked data
GRANT UNMASK TO privileged_user;

-- Grant UNMASK on specific columns
GRANT UNMASK ON curated.dim_member (email) TO support_team;

6. Object Permissions
6.1 Permission Hierarchy
-- Schema-level permissions
GRANT SELECT ON SCHEMA::curated TO analysts;
GRANT INSERT, UPDATE ON SCHEMA::staging TO etl_service;

-- Table-level permissions
GRANT SELECT ON curated.fact_claims TO report_users;
GRANT ALL ON staging.stg_claims TO etl_service;

-- Stored procedure permissions
GRANT EXECUTE ON usp_load_claims TO etl_service;
6.2 Role-Based Access
-- Create custom roles
CREATE ROLE data_analysts;
CREATE ROLE data_engineers;
CREATE ROLE report_viewers;

-- Assign permissions to roles
GRANT SELECT ON SCHEMA::curated TO data_analysts;
GRANT SELECT, INSERT, UPDATE, DELETE ON SCHEMA::staging TO data_engineers;
GRANT SELECT ON SCHEMA::reporting TO report_viewers;

-- Add users to roles
ALTER ROLE data_analysts ADD MEMBER alice@company.com;
ALTER ROLE data_engineers ADD MEMBER bob@company.com;

7. Best Practices
7.1 RLS Guidelines
1. Test predicates with sample users before production
1. Keep predicate functions simple for performance
1. Use indexed columns in predicates
1. Document security policies thoroughly
1. Regular audit of user access mappings
7.2 Security Implementation
1. Use roles instead of direct user permissions
1. Implement defense in depth (multiple layers)
1. Regular access reviews and certification
1. Log and monitor sensitive data access
1. Test security with non-admin accounts
7.3 Performance Considerations
1. Index columns used in security predicates
1. Keep user mapping tables small and indexed
1. Monitor query performance with RLS enabled
1. Consider views for complex security logic
7.4 Common Pitfalls
1. Forgetting RLS doesn't apply to db_owner
1. Complex predicates causing performance issues
1. Not testing with actual user accounts
1. Overlapping policies with unexpected results
1. Missing NULL handling in predicates

Appendix: Document Information
	Document Title
	Security & RLS Implementation Guide

	Version
	1.0

	Last Updated
	January 2026

Page of
